A shooting algorithm for problems with singular arcs

نویسندگان

  • M. Soledad Aronna
  • Pierre Martinon
  • J. Frédéric Bonnans
چکیده

In this article we propose a shooting algorithm for a class of optimal control problems for which all control variables appear linearly. The shooting system has, in the general case, more equations than unknowns and the Gauss-Newton method is used to compute a zero of the shooting function. This shooting algorithm is locally quadratically convergent if the derivative of the shooting function is one-to-one at the solution. The main result of this paper is to show that the latter holds whenever a sufficient condition for weak optimality is satisfied. We note that this condition is very close to a second order necessary condition. For the case when the shooting system can be reduced to one having the same number of unknowns and equations (square system) we prove that the mentioned sufficient condition guarantees the stability of the optimal solution under small perturbations and the invertibility of the Jacobian matrix of the shooting function associated to the perturbed problem. We present numerical tests that validate our method. Key-words: optimal control, Pontryagin Maximum Principle, singular control, constrained control, shooting algorithm, second order optimality condition, stability This work is supported by the European Union under the 7th Framework Programme FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO ∗ CIFASIS-CONICET Argentina ([email protected]) † INRIA-Saclay and CMAP, École Polytechnique, 91128 Palaiseau, France ([email protected]) ([email protected]) in ria -0 06 31 33 2, v er si on 2 5 Ju n 20 12 Un algorithme de tir pour les problèmes de commande optimale avec des arcs singuliers Résumé : Dans ce travail on présente une condition suffisante pour que l’algorithme de tir soit localement convergent quand il est appliqué aux problèmes de commande optimale affines dans les commandes. On commence par étudier le cas avec des contraintes initiales-finales sur l’état et commande libre, et en suite on ajoute des contraintes sur la commande. L’algorithme de tir est localement quadratiquement convergent si la dérivée de la fonction de tir associée est injective dans la solution optimale. Le résultat principal de cet article montre une condition suffisante pour cette injectivité, qui est très proche de la condition nécessaire du second ordre. On montre que cette condition suffisante assure la stabilité de la solution optimale aux petites perturbations et qu’elle garantit aussi que l’algorithme de tir est convergent pour le problème perturbé. On présente des essais numériques qui valident notre méthode. Mots-clés : commande optimale, Principe de Pontryaguine, commande singulière, contraintes sur la commande, algorithme de tir, conditions d’optimalité du second ordre, stabilité in ria -0 06 31 33 2, v er si on 2 5 Ju n 20 12 A shooting algorithm for problems with singular arcs 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Shooting Algorithm for Optimal Control Problems with Singular Arcs

In this article we propose a shooting algorithm for a class of optimal control problems for which all control variables appear linearly. The shooting system has, in the general case, more equations than unknowns and the Gauss-Newton method is used to compute a zero of the shooting function. This shooting algorithm is locally quadratically convergent if the derivative of the shooting function is...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Initialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach

The aim of this paper is to investigate from the numerical point of view the coupling of the Hamilton-Jacobi-Bellman (HJB) equation and the Pontryagin minimum principle (PMP) to solve some control problems. A rough approximation of the value function computed by the HJB method is used to obtain an initial guess for the PMP method. The advantage of our approach over other initialization techniqu...

متن کامل

An algorithm for quasi-linear control problems in the economics of renewable resources: The steady state and end state for the infinite and long-term horizon

This paper presents the problem of finding the optimal harvesting strategy (see [1], [2] and [3]), maximizing the expected present value of total revenues. The problem is formulated as an optimal control problem [4]. Combining the techniques of Pontryagin’s Maximum Principle and the shooting method, an algorithm has been developed that is not affected by the values of the parameter. The algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012